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ABSTRACT 

If  we  deal   initially only with  single  situa- 

tions,  monoconfidence   intervals can  be  either 

required   only to  be  weak,   to  have  proper  confi- 

dence  when  averaged  over  all   configurations,   or  to 

be  strong,  when  they must  have  the  appropriate 

properties conditionally  for  each  configuration. 

(We   assume  location-and-scale   invariance 

throughout  both   for   situations  and  confidence 

intervals.)   When  we  consider  a   plot   involving 

several   situations,   three   kinds of  polyconfidence 

intervals  seem  worth mention:   (a)   doubly-strong, 

whose  properties hold   separately  for  each combina- 

tion  of a   situation  and   a configuration,   (b)   weak, 

whose  properties hold  on  average   for  each  situa- 

tion,   (c)   singly strong,  where   the  properties 

hold,   first  on  average   for  each  situation  and, 

second,   for  each configuration  and  one  situation. 

These  notions,   as  well   as  that of balance   in  a 

conservative  sense,  are  explored   in  the   framework 

of configurations. 

Attention then shifts to finding such 

polyconfidence intervals, using configural 

polysampling*   as  the   principal   tool. 

*See  Technical   Report  No.   185,   by  Pregibon  and 

Tukey  for  general   background. 
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INTRODUCTION 

1.  The one-situation Framework 

We begin with the classic case of a single location and 

scale situation, whereby 

y * (y1ry2»---»yn) 

is, for a simple situation, a set of n iid quantities or, 

for a compound situation, a set of n evid quantities, whose 

underlying distributions are in either case completely 

specified except for location and scale changes. 

Here "iid" stands for independently and identically 

distributed and "evid" stands for "an exchangeable version 

of independently distributed". The latter means that 

y.,y.,...,y are an unknown, equiprobable permutation of 

z.,Z-,...,z  which are independent with z,   distributed 

according to f.(z).  The one wild Gaussian situation is a 

classical example.  (Still more complex sorts of situation 

have not, as yet, been introduced.) 

We find it somewhere between convenient and essential 

to work with the order statistic form of the y's, which 

could be termed "oiid" in the simple case and "ovid" in the 

Prepared in part in connection with research at Prince- 
ton University, sponsored by the U. S. Army Research 
Office (Durham). 
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compound   case.     So  we   take   y.   <  y» £•••£. y     as  certain. 

Our  concern   is  with  estimating   a  location ;j,   which  we 

assume   is  defined   as  part  of each  situation.     We   require 

location-and-scale   invariance,   both  of  the   situation  and   for 

the  estimate,   and   thus  find   it  natural   to  work with 

location-and-scale  configurations,   conveniently parameter- 

ized   (for  any choice  of a   and   b with  1   <  a  <   b <  n)   by 

ya 
= r 

*b r+s 

y.   »   r+scj for all  other   i 

Here   in view of the ordering,  we must  have 

Cj   <  0     all   i  <   a 

0   <  Cj   <   1     all   i  with  a  <   i  <   b 

1   <  c, all   i   >   b 

When doing  numerical   calculations   it  seems desirable  to   take 

a  near  n/4  and  b near  3n/4. 

We  call   the   (n-2)-component  vector *i       c^ _...(), 

...(),c   ,   the configuration   (more  precisely but  rarely the 

(a,b)-location-and-scale-conf iguration) .     Here  the   O's  rem- 

ind   us,   this once  only,   of  the  omission  of coordinates  for 

i  •  a and   i  =   b. 

The configuration,  and   the  two  anchors,  y    and   y. , 

together 

April   16,   1981 
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* determine uniquely, and are uniquely determined by 

the observed y's. 

* are all that is known to us 

* are the basis on which we are to construct estimates, 

confidence intervals, etc.  Because of the invariance 

requirement, we can only use the anchors y  and y. 

linearly.  That is, only numbers of the form 

ya 
+ t(yb - V 

can be used for estimates, confidence interval end 

points, and the like, where t will usually be a func- 

tion of the configuration c. 

2.  Monoconfidence Intervals 

In more graphic terms, we have two anchors, y  and y. , 

and a picture of the configuration including o where c 

would otherwise be and 1 where c. would otherwise be.  The 
b 

configuration   is pure  shape;   the  anchors are   for   location 

and   scale.     We  look  at  the  picture  and  decide where   in  the 

picture we  wish  to  put  a  point   (an estimate,  a  confidence 

interval  endpoint,  etc.)   If  this  is  to  be  at  t  in  the  c- 

pictures  the corresponding   y-like value   is  y    +   t(y,   -  y   ). 

Our   requirement of location-and-scale   invariance does not 

allow us  to  even  think  about   the  actual   values of y    and   y. 

while choosing   t. 

A pair  of  functions of configuration  L(c),   U(c)   define 

April   16,   1981 
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an [exact, conservative] p% monoconfidence interval for v 

for a given situation Q, if 

ProbQ{r + L(c)s <  u < r + U (c) s} 

is [equal to, greater than or equal to] p/100.  Here Prob-O 

applies equally to each and every set of underlying distri- 

butions in the situation Q.  (These differ only by 

location-and-scale changes.  If equality or inequality holds 

for one instance of the situation, it holds for all.) 

We can easily ask a little more.  The ends, r + sL(c) 

and r + sU(c), of our monocinfidence interval divide (-00, 

00) into three intervals.  We may also want some sort of 

balance.  The natural requirement is that neither should 

have an excessive chance of containing ji, that both 

ProbQ{*j < r + sL(c) } < 1°g~P 

and 

ProbQ[r +  sU(c)}   < ±§£p 

When  these   "end  conditions"   hold  we  will   speak  of a   balanced 

monoconfidence  interval.     Such  a monoconfidence   interval 

provides  both  two-sided   and  one-sided  confidence  statements. 

We   know that   there  can  be many different   kinds of mono- 

confidence   intervals,   for  a given  situation  Q.     Fisher   (   ) 

introduced   the   idea  of  requiring   behavior  of estimates,   etc. 

to  hold   separately  for  each  recognizable distinction  among 

April   16,   1981 
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the data possibilities considered.  In our set-up, this 

would mean that our confidence should hold conditionally 

upon the configuration c, so that 

Prob {r + L(c)s <  u <  t  + U(c)s|c} 

is [equal to, greater than or equal to] p/100.  We will call 

a monoconfidence limit fulfilling such a condition a strong 

monoconfidence interval. 

Such a requirement greatly reduces flexibility in 

choosing confidence intervals.  More precisely: 

* it rules out many wasteful choices for monoconfidence 

intervals, and 

* in special circumstances (e.g. Cox 19..) keeps us 

from making swaps of probability between recognizably 

different bodies of data which could lead to apparent 

overall gain.  By restricting ourselves to strong mono- 

confidence intervals, we are immune to challenges of 

the form "but look at your configuration, you know what 

happens under situation Q with such configurations". 

As a result, challenges will have to be to the situa- 

tion itself. 

* the con-con function * 

For any real t, the value of 

April 16, 1981 
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ProbQU <   tic}   = GQc(t) 

depends only on  the   indicated   arguments,   0 and  c.     As gen- 

erating   a  conditional   confidence   statement based  on  the 

configuration,   it   is mnemonic   to  call  G       ()   the  con-con 
——~ yc 

function, given Q and c. 

Every strong monoconfidence interval under situation Q 

arises by satisfying 

GQc(L(c)) =< d 

G  (U(u)) => d + Tjfj Qc 

for a suitable d, as is easy to see. 

The minimal (i.e., not purely shortenable) strong mono- 

confidence intervals, given Q and c arise from equality in 

these two inequalities.  Moreover, there is a minimal bal- 

anced strong monoconfidence interval given Q.  This is found 

by solving 

3.  Qualitative Discussion of Polyconfidence Intervals: 

Doubly-strong and Weak Instances 

Since challenge is now restricted to challenging Q, it 

is both natural and important to consider at least several 

Q's.  For a qualitative discussion, we do not need to say 

April 16, 1981 
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just  how many we  consider,   so  let   {Q}   be  a  collection of 

situations.     Notice,   that  we  may as  well   call   a collection 

of  situations a   plot. 

Our  concern   is  then with   kinds of polyconfidence   situa- 

tions as  seen   in  the   light  of a   specified   plot. 

*  doubly-strong   polyconfidence  * 

The  strongest  requirement  we  could make   is  that of a 

doubly-strong   polyconfidence   interval,   for  which we   require 

ProbQ{r +   sL(c)   < ji <  r +   sU(c)/c}  j^ 

for  all   Q and  c.     So   long   as we   restrict ourselves  to  Q's   in 

a  particular  plot,   we  can  hardly a^k very much more  than 

this.      (Indeed,   it may well   be  that we  are  asking   so  much 

that we  would   be willing   to   take   less.) 

Ke can try to ask a little more, however, namely bal- 

ance. This requires that, for all c and all Q in the plot 

II,   both 

and 

/., ,   % %   v   i        100-p       100+p 

Lf  we define  a   pair  of  plot con-cons by 

April   16,   1981 
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G-nc = mintGQC
(t)IQ in n} 

G+Hc • max{GQC
(t)IQ in m 

then  a  balanced  doubly  strong  confidence   interval   is one   for 

which 

so   that   the  minimal   (tightest)   such   is  given  by 

L(c)  " G
+nclT5o   | 

U(c) = G"I ll00~pl 1 '    -Ilcl 200 I 

For a particular p and Ü» it is possible that there are 

no solutions to these equations.  This could happen if the 

con-cons G_ (t) for individual Q's differed too much.  (This Qc 

can't happen for plots containing a finite number of Q's.) 

* weak polyconfidence * 

A doubly strong balanced polyconfidence interval is 

immune to any challenge that does not challenge the plot n. 

Accordingly, it will tend to be a long interval.  If we ask 

less, we might shorten it, perhaps considerably on average. 

Reducing the size of the plot would surely do this, but 

suppose this is not desired.  We could give up all trace of 

the "strong" requirement, and ask only that 

April 16, 1981 
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ProbQ{r +   sL(c)   <+ u <   r +   sU(c)   « jfa 

for  each  Q  in n and  on  the  average  over   its c*s.     This  would 

make   the   interval   (r +  sL(c),   r  +   sU(c)   at  least  a  weak 

polyconfidence   interval.     There  are  such   intervals,   the 

sign-test-based   non-parametric   interval   for  the median  being 

a balanced  one.     Note  that   this  particular  weak  polyconfi- 

dence   interval  will   not be  strong   for   the   same,   nominal 

value  of p,  at  least   if  the  pure Gaussian   situation   is   in 

the  plot.     This   is  so  because   preserving  conditional   proba- 

bilities  for  the Gaussian  situation  requires  using   limits of 

the  form 

y + t* s* 

where 

<s*>2 -IPT^I -y>2 

Something quite different from limits of the form 

ya 
+ t(yb - v 

There are many weak polyconfidence intervals and a dis- 

cussion of how to choose one could indeed be lengthy.  We 

note that such nonparametric procedures as the sign test and 

the (one-sample) Wilcoxon test offer very clearly specified 

examples. 

4.  A Compromise;  Singly-Strong Polyconfidence Intervals 

April 16, 1981 
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It   is natural   to  believe  that: 

* doubly-strong polyconfidence intervals are wastefully 

long, 

* weak  polyconfidence   intervals are   too   subject  to 

challenge,   in  terms  like   "look  at  that configuration!", 

* we need a compromise, where there is at least a reply 

to such challenges. It is clear what one such comprom- 

ise  would  be. 

If  we   knew two   things,  namely 

ProbQ{r +  sL(c)   < u <   r +  sU(c) }  > y2_ all   Q  in IT 

and 

Prob0*{r +  sL(c)   < n <   r +  sU(c) |c}   >_ yoo all  c,  one  Q* 

Then  the  answer   to  "but  look at  your  c"   could   be  "in  Q*  that 

wouldn't matter".     This deflects  the  challenge   from   the 

knowable  configuration  to   the  unknowable  situation.     For 

some  this would  be good  enough;   for  others not.     (The   latter 

would  have to move to or  toward   a doubly-strong  polyconfi- 

dence  interval.) 

*  criss-crossing  * 

If  L,(c) ,U.(c)   defines a  strong   (exact or  conservative) 

monoconfidence  interval   for  Q*   (in Tl) ,  and   L2(c),U2(c) 

defines a  weak   (exact conservative)   polyconfidence   interval 

April   16,   1981 
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over n, then L(c), U(c), where 

L(c) » min{L1(c) ,L2(c) ] 

U(c) • maxCU^c) ,U2(c) } 

will be a singly-strong (conservative) polyconfidence inter- 

val since 

Probn#{r + sL(c) < u < r + sU(c)|c} 

> ProbQ*{r + sL: (c) < ^i < r + sl^ (c) |c} > jfo 

for all c and 

ProbQ{r + sL(c) < H <   r +  sU(c)} 

> ProbQ{r + sL2(c) < n <   r + sU2(c) } > ^ 

for all Q in II. 

* curtailment * 

Even if (L:(c),U2(c)) is not the same as (L,<C)»U-Cc)), 

we may have 

ProbQMr + sL2(c) < »  < r + sU2(c) } > y^ 

for some c's. For such c's we can surely take 

L(c) - L2(c) 

U(c) - U2(c) 

reserving the "min" and "max" operations for where they are 

I <*>        m\ *   

April 16, 1981 
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really needed.     Such a  curtailed   criss-cross   is  easily 

implemented,  once  we  are  able  to  evaluate   the   probability 

above,  which  equals 

<WU2(C))   * Vc(L2(c)) 

Now we have started economizing, we can continue. 

*  patching  * 

How can we tighten our polyconfidence interval further? 

One easy way starts with L-(c) and U-(c), and looks at 

Vc(L2(c)) and Vc(U2(c)) 

If   these  differ  by at  least  p/100,   we  are  content with 

L(c)   -  L2(c) 

U(c)   = U2(c) 

for all   such c,  and   turn our  attention  to  other  c's, where 

Gn*,<u,<c>>   " Gn*e<L:><c>>   < Q*cv"2 Q*cv"2 100 

We  now look at  some one of these  other c's,  and  either 

decrease  L_(c)   or   increase  U-(c)   until   either  starts   (on  L 

or  U)   showing   possible changed  values 

Vc(U2<c))   - GQ#c(L2(c))   -T 00 

or 

April   16,   1981 
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1 - 
Vc(U2(c)) " Vc(L2(c)) 

If the former happens first, we stop there, else we con- 

tinue, preserving the last equality until we have 

,*ca2(0) -*f 100-p 
00 

WMO) -±SJ* Q*cl"2 200 

Then, relabelling L_ (c) as L(c), and U_ (c) as U(c) we have 

the desired values of L(c), U(c) for that particular c. 

* tuning * 

We are not prepared to offer any meaningful comments 

about the optimality of such a L(c), U(c) pair as a singly- 

strong polyconfidence interval.  There is a very real possi- 

bility that we can do better, but we shall avoid this tuning 

problem. 

* examples * 

Let  us  take  n*10,u   •  population median, 

p  *  1002/1024-98%,   and II •  all   reasonable  simple  situa- 

tions. 

With our  conventions. 

IYV yn> 
'b ya 

yn~yb 

yb-ya 

where 
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V»i „ yryi 
L2(C)   " 

U,(c) 

b 7a       'b 7a 

yn-
yb 

yb-
yc 

is a 1002/1024 exact weak polyconfidence interval over II. 

Similarly, for Q* • Gaussian, 

(y -  t*s*,  y +   t*s*) 

where 

y - i I y. 

and t* is the upper 11/1024 percent point of students t on 

19 degrees of freedom (t* » 2.495), is a strong monoconfi- 

dence   interval   at  Q*. 

The  criss-cross  L(c),   U(c),  easily calculated   for  any 

configuration,  will   be  a   singly-strong  polyconfidence   inter- 

val  over  all  of II.     Almost certainly such a choice will   be 
2 

quite  wasteful,   since   (s*)      is  easily enlarged   by  the 

extreme values of y.   or  y  .     This will   be only slightly less 

true   if we  curtail   the criss-cross,  or,  probably if we 

replace   it by a  patching. 

It might well  be  reasonable  to  study the   results of 

*   using   a  sign-test  or  Wilcoxon   strong   polyconfidence 

intervals for  the median  as  L_(c),   U_(c) 

April   16,   1981 
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* taking  Q*   as  an   intermediate   situation,   say a   simple 

si acu, 

* tfiking   L. (c) ,   L. (c)   as  the   strong  monoconfidence 

interval   on  Q*   based   on   the  w<5-biwe ight ; 

<fc   considering   all   three  of criss-cross,   curtailment, 

and   patching. 

5.     The Position 

We   thus have  at  least   three  qualities of polyconfidence 

intervals, 

* doubly-strong   (easy  to   find;   "wasteful"   to   some) 

* strong   (allows  en  answer   to   the  c-chal lenge, exampl es 

easy,   tuning   not  likely  to  be  easy) 

* weak   (many alternatives,   tuning   not   trivial,   but 

probably  feasible) 

each  of  which may or  may not   further   include   the   requirement 

of  balance.     If  we   had   examples of all   of  these   for   one  or 

more   plots,   each  user  could   take   his/her   choice. 

Thus  we  ought   to   turn   to   the  question  of  finding   such 

intervals. 

April   16,   1981 
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THE   CALCULATION«? 

5.     The  Set-up 

Ive look toward configural polysampling as the basis for 

our practical work.  We should have them: 

« o small plot, consisting of perhaps 2 to 7 situations 

S.  S_, ..., S     for each of which a center, u, is 1,2       q max 

spec i fied. 

*   a   polysample  of configurations   {c}   =   c(l),   ...,   c(m) 

(note   that  each c(i)   is either   a   (n-2)-entry vector 

array or  a   n-entry vector   array with   two   fixed   entries) 

* weights  '/,".     appropriate   for   use  when  c(j)    is  to   be 
J M 

used   as   a   configuration   sampler?   for   ?   . 
q 

* con-con   functions,   G     (t)   applicable   for   these   q's qc 

and c's. 

The character and building of all these pieces, except 

the con-con function, is discussed in Technical Report 185 

(Pregibon and Tukey, 1981) and Technical Report 191 (Bell 

and Pregibon, 1981) (see also Rogers and Relies, 1973 for 

formulas in the case a-1, n=b) .  The basic results depend on 

averages, for fixed c, represented first as integrations 

over r and s and then on integration over a rectangle (where 

Gaussian quadrature formulas apply each way).  If I  (r,s,t) 
Wc 

is the indicator function 

April 16, 1981 
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IQc(r,st)   =1,   if u <   ya +   t(yb -  ya)   »   r +  st 

•  0,   else 

which depends on q   (where  Q  = S   )   and  c  then 

GQc(t)   = ProbQ{u <  r +  st}  =  aveQc  {l(r,s.t)} 

and   this can be evaluated   for  selected  values of t   in  a  way 

similar   to   the  other   integral   evaluations. 

7.     Doubly-strong Polyconfidence  Intervals 

To   find   the  raonimal   balanced  95%  polyconfidence   inter- 

val,   for  each of  the  configurations of  the  polysample,   we 

have merely to: 

* evaluate  the con-con   functions G     (t)   for  each q  in qc 

the  plot,   each c   in   the   polysample,   and   well-selected 

values of t, 

6  calculate  the +   and -   con-con   functions  from 

G-nc(t)   =   min   (Gqc(t,/Sq   in n) 

G+Hc{t)   *   maX   (Gqc(t)/Sq   ln n) 

the  former   for  higher values of t,   the  latter   for  lower 

values of t, 

* solve  the  equations 

G
+nc"2-5% 

G_nc(t)«97.5% 

for  each c   in  the  polysample. 
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* take these values of t as L(c) and U(c) 

* assert, for these configurations (and any others to 

be treated later), that the interval in question is 

from 

r + sL(c) = ya + L(c) (yb - yfl) 

to 

r + sU(c) = ya + U(c) (yb - ya) 

If  we  want  to   know how this polyconfidence   intervals 

performs,  we   average what  we   see  at  the given  polysamples 

using   the  appropriate  weights.     Thus  the  average  lengths of 

our  confidence  intervals, which we do NOT  think  is  likely to 

be a good  criterion  to consider would  be  found  as an esti- 

mate of 

ave      aver       (U (c)   - L(c)) (s) 

ave(q)c(ave(qc)r,s{U(c)-L(c),(s))   a  ave(q)c(U(c)-L(c))   ave(qc)gs) 

perhaps as 

qc   c 
-  L(c))s qc 

where 

«      »  ave.   _.{s} qc (qc) 

was  itself estimated  by Gaussian quadrature. 

Notice  that  there  are  q-max different  such average 

lengths. 
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Thus we need not expect too much difficulty (a) in 

finding L(c) and U(c) and (b) in evaluating simple proper- 

ties. 

8.  Tuning Weak Monoconfidence Intervals for Average Lengths 

Before we attempt to tune more complicated structures, 

it is well to consider tuning weak monoconfidence intervals 

using the same dubious criterion of average length.  Here we 

wish to choose L(c) and U(c) to satisfy 

ave {GQc(U(c)) - GQc(L(c))} > ^ 

while making 

Q  , _      Q      _      0 
ave t(U(c) - L(c))s } - ave {U(c)s..,,} - ave{L <c)s0„} 
c               uu    c       QC    c 

3QC> 

small. (Note that "ave" means what might also be written 

•ave " indicating averaging over the indicated part of a 

selected instance of the situation; averaging that would 

include explicit use of weights, were this necessary, — as 

it will be in the polysampling case.) If we have, say, 500 

configurations on which we are working, we have a con- 

strained optimum problem with 1000 variables.  Direct 

approaches are likely to be inefficient. 

We will ordinarily find GQ<;(t) ogive-shaped, and its 

derivative, gQc(t), unimodal.  We will shortly have occasion 

to be concerned with two inverses of g_ (t) which we can 
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define, in general, by 

hQ (u): the algebraically smallest t with g  (t) • u, 

hQ (u) : the algebraically largest t with <3nc(t)   = u, 

So long at least as g_ , . is continuous, these will be 
JC \ u) 

well-defined   on 0   <  u <     max   {gn_}   (though  they might  be 

discontinuous,   since gn   ()   might  not be  unimodal).     If  we yc 

write 

h   m  5b
Qc

(U(c)> 

h   ' SbQcGQc(L(c)) 

53 "  SbQcV<C) 

54 ' SbQcVL(C) 

where  the  bQC   incorporate  the  needed  weights,   if  any,   for 

the  4  sums  that we  will   use   to   replace  the   averages we   used 

to   state  the  problem,  we  will  want  to 

minimize S,   - 5-   3 4 

subject to S,  - 2L  >$Q 

which  is naturally attacked  with  a   Lagrange multiplier,   x, 

by minimizing 

23  - 54  -,\(SX  - S2) 

and then choosing ^ to satisfy the constraint.  Since S3 and 

S. are functions of the {U (c)} above — and 5_ and 5. of the 
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{L(c)}  — we  can  extremelize 

h  ~ ^1 and 54   *  ^: 

separately   (unless  this  leads  to   some  U(c)   <   the correspond- 

ing   L(c).)   This  leads  to differentiating  wirt.     U(c),   to 

bQc*Qc  - #\bQc9Qc(U(c,)   * ° 

whence we may take 

U(C)   =  hSc(V*> 
similarly,  we may take 

L(C)    "   hi^Qc^) 

what remains is to empirically choose ^ to make 

ave {GQc(U(c)) - GQC(L(c))} 

equal to the desired p/100. 

9.  Other Criteri la 

We also want to be able  to  tune  our  monoconfidence 

intervals  for other criteria,  which deserve  some discussion 

in  their  own  right. 

We  all   recognize   some  form  of confidence   interval   as 

the  best  we  can do.     And   few of  us  want  a  99.9999%   interval. 

Thus  we  have come  to  accept  a  meaningful   but  small   (say 5% 

or  1%)   chance  that our  confidence   interval   will   not  cover 
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the center at which it is aimed.  Should we then pay too 

much attention to a small chance that the interval is very 

long? 

When the interval is too long, it is unhelpful, but we 

know it.  Can this be nearly as important as missing its 

target?  It would seem that the answer should be a rousing 

"no"!  If we are going to allow 5% misses, then we ought, we 

very well argue, accept 10% overlong intervals.  So we seek 

related criteria. 

Two natural, but possibly naive, choices are: 

* the 90% point of the length of the confidence- inter- 

vals, and 

* the average length of the shortest 90% of all confi- 

dence intervals. 

If we are doing direct sampling, either of these can be used 

simply and directly, just by sorting the empirical interval 

lengths. 

If we are working with configurations, we have to add a 

loop.  For what can be reasonably calculated at a configura- 

tion is the chance that an interval — cr a configurations 

— should be shorter than a prescribed length.  If we 

prescribe a length, moderately extensive computation gives 

us a % less than this length.  Then we have to adjust the 

length, and iterate.  If we must, we must. 

April 16, 1981 
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But  let   us  think about  our  criteria  with  a   little more 

care.     Perhaps  the  last  two  assess,   separately,   two  aspects 

that  we might  like   to  assess  together.     Suppose   that  we   took 
9 1 Y* ave  {90%  shortest  lengths}   + y^   (90%  point) 

This   is  the  average  of a   saturating   function 

• length, below the bend at the 90% length 

= 90% length,   else 

There are possible virtues to such a combination.  Let K be 

a trial value for the 90% length, then we would estimate 

t 

ave   {length!length £ K} 

Prob  {length  < K} 

which   is  equivalent  to  estimating 

ave  {K  -  lengthllength  < K} 

Prob  {length < K} 

where  we   still  must   iterate  on  K  to make   the  probability • 

to  p/100.     The  criterion  will   then  take   the  value 

K - ave{K  -  lengthl length < K}  - K  - K ave{l   - ler^th I length <  K} 

where the last  factor   is a  relatively slowly changing   func- 

tion of K. 

10.     Iterating   for   the Select Criterion 

Let  us  put 
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AQc(u) - avej (1 - -)| given s < uj 

BQ (u) « prob {s <  u} Qc r,s 

so that the probability that the interval length be less 

than K is, for one c. 

B I     K     I 
Qc |U(c) - L(c) | 

so that we must eventually control 

Qc °Qc |U(c) - L(c) | 

by changing  K.     For  K  fixed,   however,   we  desire   to  minimize 

K-(K  times  the   following)   and   hence,   for   fixed  K,   to 

maximize 

Sb„,  A I 
Qc   "Qc   |U(C)   -   L(c) 

since 

1   - length 
K 1   - (U(C)    -   L(C))S 

K 
*   1   - K/(U(C)   -   L(c) ) 

The  Lag rangiar   form to be extremal   is now 

SbQc  V   lü(c>   -  L(c)|   - *   <SbQcGQC(U(C>) 

whose derivatives wirt U(c) ,   and   L(c)   with 

aQc(u)   " SU aQc   (u) 

are,   less   the common   factor  b„ Qc 

" SbQcGQc(L(c)) 
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(U(c)-L(c)) 
2 - ,\gQc(U(c)), 

and 

+ a. I 
"Qc U (C)-L (C) I "    '. 2~^gOe*L*c'' 

If these vanish, so does their difference, hence 

gQc(u(c)) - gQc(L(c)) 

as tacitly before, giving 

U(C) " bQc(gQc(L(c)) 

and 

U(c) - L(c) AQc(gQc(9Qc
(L(c)) " L<c> fQC(L(c)) 

so that 

,\gQc(L(c)) - a Qc fQc(L(c)) (fQc(L(c)) 

which should be soluble for L(c), given ^ possibly with some 

effort. Once this is done for all c in our sample of confi- 

gurations, we will again want to check 

Prob (length < K> - 5bQc BQcjU(c) * L(c)| 

and adjust K to bring this to the desired value. 

The process is appreciably more complicated than for 

the average length criterion, but apparently not unbearably 

so. 
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11.     Tuning Weak Polyconfidence  Intervals 

Suppose  we  want a weak polyconfidence   interval   for  a 

plot consisting  of two situations,  A and  Z.    We  now have,   if 

we   stick to  the   simple case  of  the  average length criterion, 

eight  I's  to  consider: 

5A1   = 5bAcGAc<U(C>> 

SA2   »5bAcGAc<L<C>> 

S21   "5bZcG2c(U(C)) 

1Z2   «5bAc(L(c() 

SA3  «SbAs    U(c) 
Ac 

SA4   -5bAcs     L(c) 
Ac 

*Z3  -SbZc.     U(c) 
46 

*24  -5bZcs_L(c) 

and  we  desire  to minimize,  jointly, 

5A3  "  5A4 

and 

SZ3  -  5Z4 

subject  to 

April   16,   1981 
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hl   ~  SA2   >   P/10° 

5Zl   "  5Z2 ^  P/10° 

This clearly calls  for one  pair   (c(,§)   of shadow prices and 

one  pair  of Lagrange multipliers,  all  of which  leave  us 

minimizing 

«<*A3  -  2A4>   + *(SZ3  "  ZZ4>   "  Whl   ' 5A2>   "  V*Zl   "  5Z2> 

which can again be done  separately for  two  parts,  here 

minimizing 

«*A3  + ^SZ3   "  -'VAI   " Mzi 

and maximizing 

«SA4   + *5Z4   " 'VA2   " 'Vz2 

which lead, on differentiating w.r.t.  U(c) and L(c), 

respectively, to 

0 ' ^Ac^Ac + ^Ac " '\bAc*Ac<L<c)> * ^bZc*Zc(U<c)) 

and 

0 * «bA„sA. * ^y.^An  ~  .\AbÄ^Ae<
L<c)) - #\2b2egZc(L(c)) Z Zc^Zc 

If we now write 

,\z - ,\(i-e) 
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both  right-hand  pairs of  terms can  be  written   in  terms of 

ebA.ga.(t)  +  (l-e)b. aa^(t}  - hZi(t) Ac^Ac Zc^Bc ec 

whose   inverses can be written as 

h_   (u)        and       h-   (u) '9c 9c 

so   that  we  have 

and 

0   • rfb     s H Ac Ac        ^   Zc  Zc 
+    **»«Afl   "   ^c(U(C,) 

0
   SC<bAcSAc   +  ^bZcSZc   -   .\h9c<L(C)) 

U(c)   = h 

L(c) 

ec 

ec 

^bAc\c   +  *b ZcsZc 
#\ 

*A  +  ^bZcSZc 
T 

where  6  and  Jv  must  now be varied   jointly to  ensure 

*bAcGA,.<u<c>>   " 5b&A   (L(C))   >  p/100 Ac   Ac 

5bZcGZc(U(c))   - 5b
ZcGZc(L(c))  ^ P/10° 

Outside of  this loop,  we must vary c(/^   (we will   simplify 

matters  by forcing,   say, c( + $ • 2)   in order  to get  the 

right  joint minimum  for  the  two  average lengths. 

Plausibly what we may seek at  this point  is 
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A Z 
avefpolyconfidence  length) =      avefpolyconfidence  lengths} 

A       A Z       Z 
min  avefmonoconfidence  length}       min ave{monoconfidence  length} 

thus maximizing   a  polyefficiency defined   by 

polyefficiency •  min{monoefficiencies} 

A - monoefficiency 

Z  - monoefficiency = 

|A-minimum  average  lenqthl2 
I    actual minimum  length    I 

|Z-minimum  average  lenqthl2 
I    actual  minimum   length    I 

i 

12. Comment 

The calculations are clearly getting moderately com- 

plex. They will get somewhat worse for other criteria or 

more situations.  But they seem likely to be feasible. 

13. Tuning Singly-strong Confidence Intervals 

If we have also fixed a situation Q*, at which we want 

our polyconfidence internal to be a strong monoconfidence 

interval, what we have done is to require 

GQc(U(c)) - GQc(L(c)) > p/100 

for each c. 

We expect the usual situation. For some c (given, say, 

<*/$, y.,  and 9 ) this condition will be satisfied, for others 

not.  For the others we must involve Q in the choice of U(c> 

and L(c). 
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We can easily parametrize the possibilities in terms of 

L(c).  Given a sufficiently small L(c) (for given 

4/  $ ,},   ,  and 8 ) , there will be: 

* the smallest U(c) that satisfies the condition 

displayed above, 

• a minimum cost U(c), depending upon tf/\;,^, and theta. 

consider the larger of these, and its total cost, at c of 

the (L(c) ,U(c) pair, as given in terms of c(, $ ,^ , and 6. 

Now choose L(c) to minimize this cost and U(c) to be the 

corresponding larger value. 

When this has been done for all c, we are ready to vary 

tf, § ,^  and 6 to obtain the desired result. 

Again the process has become somewhat more complicated, 

but is probably still feasible. 
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10.  Iterating for the Select Criterion 

Let us put 
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